Distinct signaling pathways mediate touch and osmosensory responses in a polymodal sensory neuron.

نویسندگان

  • A C Hart
  • J Kass
  • J E Shapiro
  • J M Kaplan
چکیده

The Caenorhabditis elegans ASH sensory neurons mediate responses to nose touch, hyperosmolarity, and volatile repellent chemicals. We show here that distinct signaling pathways mediate the responses to touch and hyperosmolarity. ASH neurons distinguish between these stimuli because habituation to nose touch has no effect on the response to high osmolarity or volatile chemicals (1-octanol). Mutations in osm-10 eliminate the response to hyperosmolarity but have no effect on responses to nose touch or to volatile repellents. OSM-10 is a novel cytosolic protein expressed in ASH and three other classes of sensory neurons. Mutations in two other osmosensory-defective genes, eos-1 and eos-2, interact genetically with osm-10. Our analysis suggests that nose touch sensitivity and osmosensation occur via distinct signaling pathways in ASH and that OSM-10 is required for osmosensory signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polymodal Responses in C. elegans Phasmid Neurons Rely on Multiple Intracellular and Intercellular Signaling Pathways

Animals utilize specialized sensory neurons enabling the detection of a wide range of environmental stimuli from the presence of toxic chemicals to that of touch. However, how these neurons discriminate between different kinds of stimuli remains poorly understood. By combining in vivo calcium imaging and molecular genetic manipulation, here we investigate the response patterns and the underlyin...

متن کامل

In vivo imaging of C. elegans ASH neurons: cellular response and adaptation to chemical repellents.

ASH sensory neurons are required in Caenorhabditis elegans for a wide range of avoidance behaviors in response to chemical repellents, high osmotic solutions and nose touch. The ASH neurons are therefore hypothesized to be polymodal nociceptive neurons. To understand the nature of polymodal sensory response and adaptation at the cellular level, we expressed the calcium indicator protein cameleo...

متن کامل

Decoding of Polymodal Sensory Stimuli by Postsynaptic Glutamate Receptors in C. elegans

The C. elegans polymodal ASH sensory neurons detect mechanical, osmotic, and chemical stimuli and release glutamate to signal avoidance responses. To investigate the mechanisms of this polymodal signaling, we have characterized the role of postsynaptic glutamate receptors in mediating the response to these distinct stimuli. By studying the behavioral and electrophysiological properties of worms...

متن کامل

Physiological and behavioral evidence of a capsaicin-sensitive TRPV-like channel in the medicinal leech.

Transient receptor potential vanilloid (TRPV) channels are found throughout the animal kingdom, where they play an important role in sensory transduction. In this study, we combined physiological studies with in vivo behavioral experiments to examine the presence of a putative TRPV-like receptor in the medicinal leech, building upon earlier studies in this lophotrochozoan invertebrate. The leec...

متن کامل

DEG/ENaCs Lead by a Nose: Mechanotransduction in a Polymodal Sensory Neuron

Degenerin/epithelial sodium channels (DEG/ENaCs) are luminaries of gentle touch in Caenorhabditis elegans. In this issue of Neuron, Geffeney et al. demonstrate that eponymous DEG-1 channels carry mechanotransduction currents in a polymodal neuron, where they act upstream of transient receptor potential (TRP) channels.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 19 6  شماره 

صفحات  -

تاریخ انتشار 1999